AQA Qualifications

A-LEVEL CHEMISTRY

CHEM5 Energetics, Redox and Inorganic Chemistry Mark scheme

2420
June 2014

Version 1.1 Final

Mark schemes are prepared by the Lead Assessment Writer and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all associates participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every associate understands and applies it in the same correct way. As preparation for standardisation each associate analyses a number of students' scripts: alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, associates encounter unusual answers which have not been raised they are required to refer these to the Lead Assessment Writer.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available from aqa.org.uk

Question	Marking Guidance		Comments
1(a)	$\mathrm{Cl}(\mathrm{g})+\mathrm{e}^{-} \rightarrow \mathrm{Cl}^{-}(\mathrm{g})$	1	State symbols essential Allow e with no charge This and all subsequent equations must be balanced
1(b)	There is an attraction between the nucleus / protons and (the added) electron(s) Energy is released (when the electron is gained)	1 1	Allow product more stable / product has lower energy Allow reaction exothermic / heat released Allow reference to chlorine rather than fluorine Wrong process eg ionisation, boiling CE $=0$
1(c)(i)	Top line: $+\mathrm{e}^{-}+\mathrm{F}(\mathrm{g})$ Second line from top : $+\mathrm{e}^{-}+\frac{1}{2} \mathrm{~F}_{2}(\mathrm{~g})$ Bottom two lines: $+\frac{1}{2} \mathrm{~F}_{2}(\mathrm{~g})$	1 1 1	Penalise missing / wrong state symbols one mark only Penalise Fl or Cl one mark only Mark independently Allow e with no charge Penalise each lack of an electron in M1 and M2 each time

\begin{tabular}{|c|c|c|c|}
\hline 1(c)(ii) \& \[
\begin{aligned}
\& \frac{1}{2} E(F-F)+732+289++203=348+955 \\
\& \frac{1}{2} E(F-F)=79 \\
\& E(F-F)=158\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)
\end{aligned}
\] \& 1
1 \& Award one mark (M2) if M1 wrong but answer \(=\mathrm{M} 1 \times 2\) Ignore no units, penalise wrong units but allow \(\mathrm{kJ} \mathrm{mol}^{-}\) Any negative answer, \(C E=0\) \\
\hline 1(d)(i) \& \begin{tabular}{l}
Experimental lattice enthalpy value allows for / includes covalent interaction / non-spherical ions / distorted ions / polarisation \\
OR AgF has covalent character \\
Theoretical lattice enthalpy value assumes only ionic interaction / point charges / no covalent / perfect spheres / perfectly ionic \\
OR AgF is not perfectly ionic
\end{tabular} \& 1

1 \& Allow discussion of AgCl instead of AgF $C E=0$ for mention of molecules, atoms, macromolecular, mean bond enthalpy, intermolecular forces (imf), electronegativity

\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|}
\hline 1(d)(ii) \& \begin{tabular}{l}
Chloride ion larger (than fluoride ion) / fluoride ion smaller (than chloride ion) \\
Attraction between \(\mathrm{Ag}^{+}\)and \(\mathrm{Cl}^{-}\)weaker / attraction between \(\mathrm{Ag}^{+}\)and \(\mathrm{F}^{-}\) stronger
\end{tabular} \& 1

1 \& | Penalise chlorine ion once only |
| :--- |
| Allow Cl^{-}and F^{-}instead of names of ions |
| Allow chloride ion has smaller charge density / smaller charge to size ratio but penalise mass to charge ratio |
| For $\mathrm{M} 2 \mathrm{Cl}^{-}$and F^{-}can be implied from an answer to M 1 |
| Mark M1 and M2 independently provided no contradiction |
| $C E=0$ for mention of chlorine not chloride ion, molecules, atoms, macromolecular, mean bond enthalpy, intermolecular forces (imf), electronegativity |

\hline
\end{tabular}

Question	Marking Guidance	Mark	Comments
2(a)	Enthalpy change $/ \Delta H$ when 1 mol of a gaseous ion forms aqueous ions		Enthalpy change for $\mathrm{X}^{+/-}(\mathrm{g}) \rightarrow \mathrm{X}^{+/-}(\mathrm{aq})$ scores M1 and M2 Allow heat energy change instead of enthalpy change Allow 1 mol applied to aqueous or gaseous ions If substance / atoms in M1 CE $=0$ If wrong process (eg boiling) $\mathrm{CE}=0$
2(b)	ΔH (solution) $=\Delta H($ lattice $)+\underline{\Sigma}(\Delta H$ hydration $)$ OR $+77=+905-464+\Delta H$ (hydration, Cl^{-}) OR $\Delta H\left(\right.$ hydration, $\left.\mathrm{Cl}^{-}\right)=+77-905+464$ $=-364\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)$	1	Allow any one of these three for M1 even if one is incorrect Allow no units, penalise incorrect units, allow $\mathrm{kJ} \mathrm{mol}^{-}$ Allow lower case j for J (Joules) +364 does not score M2 but look back for correct M1

2(c)	Water is polar / water has $\mathrm{H} \delta+$ (Chloride ion) attracts (the H in) water molecules (note chloride ion can be implied from the question stem)	1 1	Idea that there is a force of attraction between the chloride ion and water Do not allow H bonds / dipole-dipole / vdW / intermolecular but ignore loose mention of bonding Do not allow just chlorine or chlorine atoms / ion Mark independently
2(d)	$\Delta G=\Delta H-T \Delta S$ $(\Delta G=0 \text { so }) T=\Delta H / \Delta S$ $T=77 \times 1000 / 33=2333 \underline{K} \text { (allow range } 2300 \text { to 2333.3) }$ Above the boiling point of water (therefore too high to be sensible) / water would evaporate	1 1 1 1	Look for this equation in 2(d) and/or 2(e); equation can be stated or implied by correct use. Record the mark in 2(d) Units essential, allow lower case k for K (Kelvin) Correct answer with units scores M1, M2 and M3 2.3 (K) scores M1 and M2 but not M3 Can only score this mark if M3>373 K

2(e)	$\left.\begin{array}{l} \Delta S=(\Delta H-\Delta G) / T \text { OR } \Delta S=(\Delta G-\Delta H) /-T \\ =((-15+9) \times 1000) / 298 \\ \text { OR } \quad(-15+9) / 298 \\ =-20 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1} \end{array} \begin{array}{l} \text { OR }-0.020 \mathrm{~kJ} \mathrm{~K}^{-1} \mathrm{~mol}^{-1} \\ \text { (allow }-20 \text { to }-20.2) \end{array} \quad \text { (allow }-0.020 \text { to }-0.0202\right) \text {) }$	1 1	Answer with units must be linked to correct M2 For M3, units must be correct Correct answer with appropriate units scores M1, M2 and M3 and possibly M1 in 2(d) if not already given Correct answer without units scores M1 and M2 and possibly M1 in 2(d) if not already given Answer of -240 / -0.24 means temperature of 25 used instead of 298 so scores M1 only If ans $=+20 /+0.020$ assume AE and look back to see if M1 and possibly M2 are scored

\begin{tabular}{|c|c|c|c|}
\hline Question \& Marking Guidance \& Mark \& Comments \\
\hline 3(a) \& \begin{tabular}{l}
White powder / solid / ash / smoke \\
Bright / white light / flame
\[
\mathrm{Mg}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{MgO}+\mathrm{H}_{2}
\]
\end{tabular} \& \begin{tabular}{l}
1 \\
1
\end{tabular} \& \begin{tabular}{l}
Ignore ppt / fumes \\
Allow glows white / glows bright \\
Ignore state symbols \\
Ignore reference to effervescence or gas produced
\end{tabular} \\
\hline 3(b) \& \begin{tabular}{l}
\(\mathrm{Mg}^{2+}\) / magnesium ion has higher charge than \(\mathrm{Na}^{+}\) \\
Attracts delocalised / free / sea of electrons more strongly / metal-metal bonding stronger / metallic bonding stronger
\end{tabular} \& 1

1 \& | Allow Mg^{2+} ions smaller / greater charge density than Na^{+}ions |
| :--- |
| Allow Mg atoms smaller than Na (atoms) |
| Allow magnesium has more delocalised electrons |
| Must be a comparison |
| Ignore reference to nuclear charge |
| Wrong type of bonding (vdW, imf), mention of molecules $C E=0$ |

\hline
\end{tabular}

3(c)	Structure: Macromolecular / giant molecule / giant covalent Bonding: Covalent / giant covalent	1	Mark independently
	Physical Properties: Any two from: Hard Brittle / not malleable Insoluble Non conductor	2	Ignore correct chemical properties Ignore strong, high boiling point, rigid
3(d)	Formula: $\mathrm{P}_{4} \mathrm{O}_{10}$ Structure: Molecular Bonding: Covalent / shared electron pair van der Waals' / dipole-dipole forces between molecules	1	Mention of ionic or metallic, can score M1 only
If macromolecular, can score M1 \& M3 only			

3(e) $\mathrm{SO}_{2}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{H}^{+}+\mathrm{HSO}_{3}^{-}$ 1 Products must be ions Allow $\mathrm{SO}_{2}+\mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{H}^{+}+\mathrm{SO}_{3}{ }^{2-}$ Allow two equations showing intermediate formation of $\mathrm{H}_{2} \mathrm{SO}_{3}$ that ends up as ions Ignore state symbols Allow multiples
$3(f)$
$\mathrm{P}_{4} \mathrm{O}_{10}+6 \mathrm{MgO} \rightarrow 2 \mathrm{Mg}_{3}\left(\mathrm{PO}_{4}\right)_{2}$ $\mathrm{OR} \mathrm{P}_{4} \mathrm{O}_{10}+6 \mathrm{MgO} \rightarrow 6 \mathrm{Mg}^{2+}+4 \mathrm{PO}_{4}{ }^{3-}$ OR $\mathrm{P}_{2} \mathrm{O}_{5}+3 \mathrm{MgO} \rightarrow \mathrm{Mg}_{3}\left(\mathrm{PO}_{4}\right)_{2}$ etc

Question	Marking Guidance	Mark	Comments
4(a)	Reaction 1 ammonia $\left(\mathrm{NH}_{3}\right)$ (solution) / NaOH $\begin{aligned} & {\left[\mathrm{Cu}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}+2 \mathrm{NH}_{3} \rightarrow\left[\mathrm{Cu}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}(\mathrm{OH})_{2}\right]+2 \mathrm{NH}_{4}^{+} /} \\ & {\left[\mathrm{Cu}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}+2 \mathrm{OH}^{-} \rightarrow\left[\mathrm{Cu}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}(\mathrm{OH})_{2}\right]+2 \mathrm{H}_{2} \mathrm{O}} \end{aligned}$	$\begin{aligned} & 1 \\ & 2 \end{aligned}$	General principles in marking this question Square brackets are not essential Penalise charges on individual ligands rather than on the whole complex Reagent and species can be extracted from the equation Ignore conditions such as dilute, concentrated, excess Reagent must be a compound NOT just an ion Equations must start from $\left[\mathrm{Cu}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$ except in $4(\mathrm{~b})$ Mark reagent, species and equation independently Do not allow OH^{-}for reagent Product 1, balanced equation 1 Allow either equation for ammonia
4(b)	Reaction 2 Ammonia (conc/xs) $\left[\mathrm{Cu}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}(\mathrm{OH})_{2}\right]+4 \mathrm{NH}_{3} \rightarrow\left[\mathrm{Cu}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\left(\mathrm{NH}_{3}\right)_{4}\right]^{2+}+2 \mathrm{H}_{2} \mathrm{O}+2 \mathrm{OH}^{-}$	$\begin{aligned} & 1 \\ & 2 \end{aligned}$	Product 1, balanced equation 1 Note that the equation must start from the hydroxide $\left[\mathrm{Cu}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}(\mathrm{OH})_{2}\right]$

4(c)	Reaction 3 $\mathrm{Na}_{2} \mathrm{CO}_{3}$ / any identified soluble carbonate / NaHCO_{3} $\left[\mathrm{Cu}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}+\mathrm{CO}_{3}^{2-} \rightarrow \mathrm{CuCO}_{3}+6 \mathrm{H}_{2} \mathrm{O}$ $\mathrm{OR}\left[\mathrm{Cu}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}+\mathrm{Na}_{2} \mathrm{CO}_{3} \rightarrow \mathrm{CuCO}_{3}+6 \mathrm{H}_{2} \mathrm{O}+2 \mathrm{Na}^{+}$ OR $2\left[\mathrm{Cu}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}+2 \mathrm{CO}_{3}{ }^{2-} \rightarrow \mathrm{Cu}(\mathrm{OH})_{2} \cdot \mathrm{CuCO}_{3}+11 \mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2}$ OR with NaHCO_{3} $\left[\mathrm{Cu}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}+\mathrm{HCO}_{3}^{-} \rightarrow \mathrm{CuCO}_{3}+6 \mathrm{H}_{2} \mathrm{O}+\mathrm{H}^{+}$	1 2	Do not allow NaCO_{3} or any insoluble carbonate but mark on Product 1, balanced equation 1
4(d)	Reaction 4 $\mathrm{HCl}($ conc/xs) $/ \mathrm{NaCl}$ $\left[\mathrm{Cu}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}+4 \mathrm{Cl}^{-} \rightarrow\left[\mathrm{CuCl}_{4}\right]^{2-}+6 \mathrm{H}_{2} \mathrm{O}$	1 2	Allow any identified soluble chloride Product 1, balanced equation 1

Question	Marking Guidance	Mark	Comments	
5(a)	$\mathrm{Pt}\left\|\mathrm{H}_{2}\right\| \mathrm{H}^{+} \\| \mathrm{Fe}{ }^{2+} \mid \mathrm{Fe}$ Note, allow one mark only for correct symbol in reverse: $\mathrm{Fe}\left\|\mathrm{Fe}^{2+}\right\|\left\|\mathrm{H}^{+}\right\| \mathrm{H}_{2} \mid \mathrm{Pt}$	2	Allow 1 for correct order of symbols but lose second mark for a wrong phase boundary(s) / Pt missing / extra Pt on RHS, additional phase boundary Allow dashed lines for salt bridge Ignore state symbols Ignore 2 if used before H^{+}	
5(b)	Electron donor	1	Allow (species that) loses electrons Do not allow reference to electron pairs	
5(c)	Cl_{2} / chlorine (Species on RHS / electron donor) has most positive / largest $E^{\ominus} /$ has highest potential	1 1	If M1 blank or incorrect cannot score M2 Do not allow reference to e.m.f. or E(cell)	
5(d)(i)	$\mathrm{Cl} /$ chlorine	1		
5(d)(ii)	Chlorine +1 to chlorine 0	1	CE if chlorine not identified in 5(d)(i) Allow chlorine +1 to chlorine -1 (in Cl^{-}) Allow oxidation state decreases by one OR two Allow oxidation state changes by -1 OR -2	

5(e)	$\begin{aligned} & 4 \mathrm{HOCl}+4 \mathrm{H}^{+}+4 \mathrm{OH}^{-} \rightarrow 2 \mathrm{Cl}_{2}+\mathrm{O}_{2}+6 \mathrm{H}_{2} \mathrm{O} \\ & \mathrm{OR} \\ & 4 \mathrm{HOCl} \rightarrow 2 \mathrm{Cl}_{2}+\mathrm{O}_{2}+2 \mathrm{H}_{2} \mathrm{O} \end{aligned}$	2	Allow one mark for any incorrect equation that shows $\mathrm{HOCl} \rightarrow \mathrm{Cl}_{2}+\mathrm{O}_{2}$ Allow multiples Ignore state symbols Penalise one mark for uncancelled or uncombined species (eg $\mathrm{H}_{2} \mathrm{O}+\mathrm{H}_{2} \mathrm{O}$ instead of $2 \mathrm{H}_{2} \mathrm{O}$)
5(f)(i)	e.m.f. $=0.40-(-1.25)=\underline{1.65}(\mathrm{~V}) / \pm 1.65(\mathrm{~V})$	1	Allow -1.65 (V)
5(f)(ii)	$2 \mathrm{Zn}+\mathrm{O}_{2} \rightarrow 2 \mathrm{ZnO}$	1	Allow multiples Ignore state symbols Do not allow uncancelled species If more than one equation given, choose the best
5(f)(iii)	A / stainless lid $\underline{\mathrm{O}}_{2}$ (electrode) has a more positive $\underline{\underline{E^{0}}}$ / oxygen (electrode) requires / gains electrons from external circuit OR Zinc (electrode) has more negative E^{\ominus}		If M 1 incorrect or blank $\mathrm{CE}=0$ Or reference to the overall equation and a link to electrons going into A Allow oxygen is reduced and reduction occurs at the positive electrode Do not allow reference to e.m.f. or E (cell)
5(f)(iv)	(Cell) reaction(s) cannot be reversed / zinc oxide cannot be reduced to zinc by passing a current through it / zinc cannot be regenerated	1	Allow danger from production of gas / oxygen produced / hydrogen produced

Question	Marking Guidance	Mark	Comments
6(a)(i)	$\begin{aligned} & \mathrm{H}_{2}+2 \mathrm{OH}^{-} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}+2 \mathrm{e}^{-} / \mathrm{H}_{2} \rightarrow 2 \mathrm{H}^{+}+2 \mathrm{e}^{-} \\ & \mathrm{O}_{2}+4 \mathrm{e}^{-}+2 \mathrm{H}_{2} \mathrm{O} \rightarrow 4 \mathrm{OH}^{-} / \mathrm{O}_{2}+4 \mathrm{H}^{+}+4 \mathrm{e}^{-} \rightarrow 2 \mathrm{H}_{2} \mathrm{O} \end{aligned}$	1 1	Any order
6(a)(ii)	Hydrogen (electrode) produces electrons Oxygen (electrode) accepts electrons	1	Ignore reference to salt bridge Do not allow at negative / positive electrode - must identify hydrogen and oxygen Allow electrons flow to the oxygen electrode
6(b)	Hydrogen / the fuel / reactants supplied continuously / fed in	1	Do not accept oxygen supplied as the only statement
6(c)	In the fuel cell, a greater proportion of the energy available from the hydrogen-oxygen reaction is converted into useful energy	1	Allow less energy wasted / more efficient Do not allow reference to safety
6(d)	Hydrogen is flammable / H^{+}corrosive / OH^{-}corrosive / hydrogen explosive	1	

Question	Marking Guidance	Mark	Comments
7(a)	In each of \mathbf{P} and \mathbf{Q} the oxidation state of Cr is $+3 /$ both contain Cr^{3+}	1	If oxidation states are different lose M1 and M2
	In each of \mathbf{P} and \mathbf{Q} the electron configuration is the same $/ d^{3} / 3 d^{3}$	1	Do not allow just same number of electrons
	Ligands are different	1	
	Different energies of (d) electrons / different split of (d) electron energy levels / different energy gap of (d) electrons / different (d) orbital energy	1	
	Different wavelengths / frequencies / energies of light / colours (of light) are absorbed (by the d electrons)	1	Reference to emission and/or uv light but not to visible loses M5 and M6
	Different wavelengths / frequencies / energies of light / colours (of light) are transmitted / reflected	1	

7(b)	$\begin{aligned} & {\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]^{2+}+3 \mathrm{NH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{2}} \\ & \rightarrow\left[\mathrm{Co}\left(\mathrm{NH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{2}\right)_{3}\right]^{2+}+6 \mathrm{NH}_{3} \end{aligned}$	1	Allow $\mathrm{NH}_{2} \mathrm{C}_{2} \mathrm{H}_{4} \mathrm{NH}_{2}$ and $\mathrm{CH}_{2} \mathrm{NH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{2}$ Allow partial substitution Do not allow en or other formulae for M1 but can score M2
	4 particles form 7 particles / increase in number of particles	1	Allow molecules, entities, ions, moles instead of particles Do not allow atoms Can score M2 if numbers match candidates incorrect equation provided number of particles increases
	disorder / entropy increases / ΔS positive	1	Cannot score M3 if number of particles stated or in equation is the same or decreases
	ΔH is approx. zero / no net change in bond enthalpies	1	Allow same number and type of bonds broken and formed
	ΔG is negative / $\Delta G<=0$	1	Mark M4 and M5 independently

7(c)(i)	 Bond angle 90° Charge of zero	1 1	Correct displayed structure Must show all three $\mathrm{N}-\mathrm{H}$ bonds on each N Ignore arrows and lone pairs, attempt to show shape Ignore charges on atoms in structure for M1 Allow 87 to 93 degrees Allow this angle for any complex with 4 ligands eg if NH_{2} or Cl used instead of NH_{3} Award this mark if no charge shown on structure but if charges shown on ligands in M1 must state that overall charge $=0$ Allow M3 only if cisplatin is correct OR if trans form OR if NH_{3} not displayed OR if NH_{2} used instead of NH_{3}
7(c)(ii)	$\left(\mathrm{NH}_{3}\right)_{2} \mathrm{PtCl}_{2}+\mathrm{H}_{2} \mathrm{O} \rightarrow\left[\left(\mathrm{NH}_{3}\right)_{2} \mathrm{PtCl}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]^{+}+\mathrm{Cl}^{-}$	1	If formula of cisplatin is incorrect, mark consequentially provided $\mathrm{H}_{2} \mathrm{O}$ replaces Cl^{-}and charge on complex increases by one
7(c)(iii)	Use in small amounts / short bursts / target the application / monitor the patients	1	Allow: Give patient time between doses

$7(\mathrm{~d})$	$\mathrm{V}_{2} \mathrm{O}_{5}+\mathrm{SO}_{2} \rightarrow \mathrm{~V}_{2} \mathrm{O}_{4}+\mathrm{SO}_{3} / \mathrm{V}_{2} \mathrm{O}_{5}+\mathrm{SO}_{2} \rightarrow 2 \mathrm{VO}_{2}+\mathrm{SO}_{3}$	1	Allow multiples
	$\mathrm{V}_{2} \mathrm{O}_{4}+\frac{1}{2} \mathrm{O}_{2} \rightarrow \mathrm{~V}_{2} \mathrm{O}_{5} / 2 \mathrm{VO}_{2}+\frac{1}{2} \mathrm{O}_{2} \rightarrow \mathrm{~V}_{2} \mathrm{O}_{5}$	1	
	Acts as a catalyst/lowers the activation energy	1	
	Speeds up the (overall) reaction (between SO_{2} and oxygen)	1	

Question	Marking Guidance	Mark	Comments
$8(\mathrm{a})$	moles of $\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}$ per titration $=21.3 \times 0.0150 / 1000=\underline{3.195 \times 10^{-4}}$	1	1
$\left(\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}+14 \mathrm{H}^{+}+6 \mathrm{Fe}^{2+} \rightarrow 2 \mathrm{Cr}^{3+}+7 \mathrm{H}_{2} \mathrm{O}+6 \mathrm{Fe}^{3+}\right) \mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2-}: \mathrm{Fe}^{2+}=1: 6$			
moles of $\mathrm{Fe}^{2+}=6 \times 3.195 \times 10^{-4}=1.917 \times 10^{-3}$			
original moles in $250 \mathrm{~cm}^{3}=1.917 \times 10^{-3} \times 10=1.917 \times 10^{-2}$	1	If 1:6 ratio incorrect cannot score M2 or M3	

